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1. Introduction

A few years ago, a new formalism was proposed for quantizing the superstring in a mani-

festly ten-dimensional super-Poincaré covariant manner [1]. This formalism has been used

for computing covariant multiloop amplitudes [2], leading to new insights into perturbative

finiteness of superstring theory [3].

This pure spinor formalism for superstrings, in the flat background, is based on a set

of ten-dimensional superspace variables xm, θα (and its conjugate pα), and a set of bosonic

ghosts fields λα (and its conjugate wα) transforming as SO(10) spinors and satisfying a

pure spinor constraint λαγm
αβλβ = 0 for m = 1 to 10. The need for this constraint comes

from nilpotency of a BRST operator constructed from fermionic Green-Schwarz (GS) con-

straints and the pure spinor λα. It has been shown that the string spectrum found using

the BRST cohomology coincides with the light-cone spectrum of the GS string [4 – 6]. This

fact was also recently proven by using the pure spinor superstring partition function [7]

(up to the fifth mass-level).

The information about the spectrum is encoded in the partition function

Z(q, t) ≡ TrH
[

(−)F qL0tJ0

]

=
∑

h

Zh(t)qh , (1.1)

where J0 =
∮

dzJ(z) and L0 =
∮

dz zT (z), J0 is the zero mode of the U(1) current J(z), L0

is the zero mode of the Virasoro generator T (z), F the fermion number (which takes account

of the statistics), and H the corresponding Hilbert space. The computation of the pure

spinor superstring partition function boils down to compute the partition function of the

pure spinor sector since the calculation of the matter sector (xm, θα) is very simple [7 – 9].

There have been many attempts for computing the partition function of pure spinors,

for instance, in [8, 9] character formulas Zh(t) were computed up to the level h = 1, i.e. the
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zero mode Z0(t) and first massive Z1(t) part of the partition function (1.1). In [10, 11], the

authors have tried to find a prescription which allows to compute the partition function

of curved beta-gamma systems, but the employment of those techniques to the case of

pure spinors are still lacking. In [12] it was studied partition functions of certain subset of

curved beta-gamma systems (defined by quadratic constraints) as toy models in order to

specialize then to the case of pure spinors.

Recently, it has been presented a formal expression for the partition function of pure

spinors in terms of an infinite set of free-field ghosts [7]

Z(q, t) =

∞
∏

k=1

[

(1 − tk)−Nk

∞
∏

h=1

(1 − qhtk)−Nk(1 − qht−k)−Nk

]

, (1.2)

where Nk are the multiplicities of the ghost fields. The use of these ghosts comes from

the resolution of the pure spinor constraint, and the necessity of infinitely many of them

is because the pure spinor constraint is infinitely reducible [7, 13]. Although it may seem

difficult to extract useful information from the formal expression (1.2), by appealing to some

regularization procedure in order to guarantee the convergence of the infinite product over

k, character formulas Zh(t) were calculated up to the fifth mass-level (h = 5). The same

character formulas were also computed using fixed point techniques [7].

In this paper, we propose a novel application of Padé approximants [14] as a tool

for computing higher-level character formulas Zh(t) of pure spinors. We show by explicit

computation that our first five character formulas are in agreement with the ones found

in [7], and in addition, we obtain results up to the twelfth mass-level (h = 12). It is left as an

ambitious challenge to find the complete pure spinor partition function. We hope that our

work is a first step towards this explicit construction of the pure spinor partition function.

The paper is organized as follows: In section 2, a short review of SO(10) pure spinors is

given. In section 3, we review some concepts and ideas regarding to the partition function

of pure spinors. In section 4, we describe the method of Padé approximants for comput-

ing higher level character formulas, and we present our results. A summary and further

interesting topics are given in section 5. Finally in appendix A, we present some details

involved in the computations of higher level character formulas.

2. Pure spinors: a reminder

The SO(10) pure spinor λα is constrained to satisfy λαγm
αβλβ = 0, where m = 1 to 10,

α, β = 1 to 16. γm
αβ and γm αβ are 16 × 16 symmetric matrices which are the off-diagonal

blocks of the 32 × 32 ten-dimensional Γ-matrices and satisfy γ
(m
αγ γn) γβ = 2ηmnδβ

α. This

implies that λαλβ can be written as

λαλβ =
1

5!25
γαβ

mnpqr(λ
γγmnpqr

γδ λδ) (2.1)

where λγmnpqrλ defines a 5-dimensional complex hyperplane. This 5-dimensional complex

hyperplane is preserved up to a phase by a U(5) subgroup of SO(10) rotations. So projective
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pure spinors in d = 10 Euclidean dimensions parameterize the coset space SO(10)/U(5),

which implies that λα has 11 independent complex degrees of freedom [15].

The pure spinor constraint (2.1) can be solved and we can express λα in terms of the 11

independent degrees of freedom. This was done in [1] by decomposing the 16 components

of λα into SU(5) × U(1) representations as

λ+ = γ, λ[ab] = γu[ab], λ[abcd] = −1

8
γu[abucd], (2.2)

where γ is an SU(5) scalar, and u[ab] is an SU(5) antisymmetric two-form. Using this

decomposition, and by bosonizing the (β, γ) fields as (β = ∂ξe−φ, γ = ηeφ), we can write

the formulas for the currents [8]

J = −5

2
∂φ − 3

2
ηξ, (2.3)

Nab = vab,

N b
a = −uacv

bc + δb
a

(

5

4
ηξ +

3

4
∂φ

)

,

Nab = 3∂uab + uacubdv
cd + uab

(

5

2
ηξ +

3

2
∂φ

)

,

T =
1

2
vab∂uab −

1

2
∂φ∂φ − η∂ξ +

1

2
∂(ηξ) − 4∂(∂φ + ηξ),

where T is the stress-energy tensor and the worldsheet fields satisfy the OPE’s

η(y)ξ(z) ∼ (y − z)−1, φ(y)φ(z) ∼ − log(y − z), vabucd ∼ δ[a
c δ

b]
d (y − z)−1. (2.4)

Using these parameterizations of a pure spinor, the OPE’s of the currents in (2.3) can

be computed to be

Nmn(y)λα(z) ∼ 1

2

1

y − z
(γmnλ)α, J(y)λα(z) ∼ 1

y − z
λα, (2.5)

Nkl(y)Nmn(z) ∼ − 3

(y−z)2
(ηn[kηl]m)+

1

y−z
(ηm[lNk]n−ηn[lNk]m),

J(y)J(z) ∼ − 4

(y − z)2
, J(y)Nmn(z) ∼ 0,

Nmn(y)T (z) ∼ 1

(y − z)2
Nmn(z), J(y)T (z) ∼ − 8

(y − z)3
+

1

(y − z)2
J(z),

T (y)T (z) ∼ 1

2

22

(y − z)4
+

2

(y − z)2
T (z) +

1

y − z
∂T.

So the conformal central charge is 22, the ghost-number anomaly is −8, the Lorentz

central charge is −3, and the ghost-number central charge is −4. One can verify the

consistency of these charges by considering the Sugawara construction of the stress tensor

T =
1

2(k + δ)
NmnNmn +

1

8
JJ + ∂J , (2.6)

where k is the Lorentz central charge, δ is the dual Coxeter number for SO(10). Setting

k = −3, one finds that the SO(10) current algebra contributes −27 to the conformal central

charge and the ghost current contributes 49 to the conformal central charge. So the total

conformal central charge is 22 as expected.
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3. Partition function of pure spinors

In this section, we review some aspects of the pure spinor partition function and indicate

the main results we are going to use. The characters of the states (in the pure spinor

Hilbert space [7]) we wish to keep track of are their statistics, weights h (Virasoro levels),

t-charge (measured by J = wαλα). Introducing formal variables (q, t) for each quantum

number, we define the character as

Z(q, t) = Tr(−1)F qL0tJ0

=
∑

h≥0

Zh(t)qh (3.1)

=
∑

h≥0,n

Nh,nqhtn .

The trace is taken over the pure spinor Hilbert space. The quantum numbers of the

basic operators ω and λ are: h(ω, λ) = (1, 0), t(ω, λ) = (−1, 1). In [7], it was given a

prescription for computing the Nh,n coefficients.1 Once these coefficients are known, it is

possible to calculate the character of pure spinors at each level h

Zh(t) =
∑

n

Nh,ntn . (3.2)

At the lowest level, the Hilbert space is spanned by non-vanishing polynomials of λ.

Due to the pure spinor constraint, λ’s can only appear in the “pure spinor representations”

λ((α1λα2 · · ·λαn)) = [0000n]tn , (n ≥ 0) . (3.3)

Here, we also indicated the t-charge of the state, and the symbol ((α1α2 · · ·αn)) signifies the

“spinorial γ-traceless condition”, which means that the expression is zero when any two in-

dices αiαj are contracted using γµ
αiαj . Since the pure spinor representations have dimension

dim[0000n] =
(n + 7)(n + 6)(n + 5)2(n + 4)2(n + 3)2(n + 2)(n + 1)

7 · 6 · 52 · 42 · 32 · 2 , (3.4)

the level zero character is easily found to be [8, 9]

Z0(t) =
1 − 10t2 + 16t3 − 16t5 + 10t6 − t8

(1 − t)16
. (3.5)

As it was analyzed in [7, 13], the pure spinor constraint can be resolved by introducing

an infinite chain of free-field ghosts. The multiplicities Nk of the ghosts can be obtained

by writing the level zero character (3.5) as [7, 8]

Z0(t) =
∞
∏

k=1

(1 − tk)−Nk . (3.6)

1These coefficients represent the number of states at each level h with n t-charge, and its sign tell us

whether the states are fermionic or bosonic.
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The fields at ghost number k will have |Nk| components, and will be bosons for Nk > 0

and fermions for Nk < 0. The multiplicities Nk contain the information about the Virasoro

central charge, as well as the ghost current algebra:

1

2
cvir =

∞
∑

k=1

Nk, aghost = −
∞
∑

k=1

kNk, cghost = −
∞
∑

k=1

k2Nk. (3.7)

We can easily deduce from (3.5) and (3.6):

N1 = 16, N2 = −10, N3 = 16, N4 = −45, N5 = 144, N6 = −456, N7 = 1440, . . . (3.8)

For the computations to be done in the appendix A, we will need to know the value

of the moments of the Nk’s, i.e. we want:
∑∞

k=1 ks+1Nk. This was analyzed in [8]. The

moments of (3.8) are given by

∞
∑

k=1

ks+1Nk = 12 − 2s+1 − 1

ζ(−s)

∞
∑

k=1

ks
(

(−2 −
√

3)k + (−2 +
√

3)k
)

(3.9)

= 12 − 2s+1 − Li−s(−2 −
√

3) + Li−s(−2 +
√

3)

ζ(−s)
,

where Lis(z) is the so-called polylogarithm (also known as de Jonquière’s function), it is a

special function defined by the sum

Lis(z) =

∞
∑

k=1

zk

ks
.

Another way to get
∑∞

k=1 ks+1Nk is by considering the general expression of the form

we analyzed in (3.5) and (3.6):

∞
∏

k=1

(1 − tk)−Nk =
P (t)

Q(t)
,

where P and Q are some polynomials. We have

∞
∑

k=1

Nk log(1 − ekx) = − log
P (ex)

Q(ex)
.

Since

log(1 − ex) = log(−x) +
x

2
+

∞
∑

g=1

B2g

2g(2g)!
x2g,

where Bk are Bernoulli numbers, we have:

log(x)

∞
∑

k=1

Nk +

∞
∑

k=1

log(−k)Nk +
x

2

∞
∑

k=1

kNk +

∞
∑

g=1

B2g

2g(2g)!
x2g

∞
∑

k=1

k2gNk = − log
P (ex)

Q(ex)
. (3.10)
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Using (3.5) and expanding the right hand side r.h.s. of (3.10), we obtain the following

value for the moments

∞
∑

k=1

Nk = 11 ,

∞
∑

k=1

kNk = 8 ,

∞
∑

k=1

k2Nk = 4 ,

∞
∑

k=1

k4Nk = −4 , (3.11)

∞
∑

k=1

k6Nk = 4 ,

∞
∑

k=1

k8Nk =
68

3
and

∞
∑

k=1

k10Nk = −396 .

The first three moments of Nk’s given in (3.11) contain the information about the conformal

central charge cvir, the ghost-number anomaly aghost, and the ghost-number central cghost

(3.7). As we can check, the value of these current central charges are in agreement with

the non-covariant calculation (2.5).

In a recent paper [7], using the ghosts, it was constructed a BRST operator and since

this operator was given such that it carries zero t-charge, the partition function of its

cohomology is equal to that of the total Hilbert space of (now unconstrained) pure spinors

and the ghosts. Therefore, the partition function of pure spinors was formally written as

Z(q, t) =

∞
∏

k=1

[

(1 − tk)−Nk

∞
∏

h=1

(1 − qhtk)−Nk(1 − qht−k)−Nk

]

(3.12)

Z(q, t) =
∞
∏

k=1

[

∞
∏

h=0

(1 − qhtk)−Nk

∞
∏

h=1

(1 − qht−k)−Nk

]

=
∞
∑

h=0

Zh(t)qh.

Using (3.11) and (3.12), an elementary calculation shows

Z(q, t) = −t−8Z(q, 1/t), (3.13)

Z(q, t) = −t−4q2Z(q, q/t) . (3.14)

These symmetries (3.13) and (3.14) of the partition function are referred as field-antifield

and ∗-conjugation symmetry respectively [7]. In the forthcoming sections, starting from

the formal expression of the partition function (3.12), we are going to describe a method

for computing higher level character formulas Zh(t).

4. Padé approximants

The Padé approximation seeks to approximate the behavior of a function by a ratio of two

polynomials. This ratio is referred to as the Padé approximant. This approximation works

nicely even for functions containing poles, because the use of rational functions allows them

to be well-represented. Recently, the Padé approximation has been applied to string field

theory to analyze the tachyon condensation [16 – 18].

Let us now consider the general equations of the Padé approximation. Given some

function f(t), its [M/N ] Padé approximant denoted by f [M/N ](t) is a rational function of

the form [14]

f [M/N ](t) =
1 +

∑M
j=1 pjt

j

∑N
j=0 qjtj

, (4.1)
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where the coefficients p1, p2, · · · , pM , q0, q1, · · · , qN , are obtained by solving a system of

M + N + 1 algebraic equations

dnf [M/N ]

dtn
(a) = f (n)(a) , n = 0, 1, 2, . . . , M + N . (4.2)

The equations (4.2) came from equating the coefficients of (t − a)n (up to the order

n = M + N) in the Taylor expansion of the functions f(t) and f [M/N ](t) around some

point t = a (which usually is taken at t = 0).

Having sketched briefly the method to approximate functions by means of rational

functions. Next, we are going to use this method for computing higher level character

formulas of pure spinors. Let us start by written the formal expression (3.12) for the

partition function of pure spinors like the following

Z(q, t) = Z0(t)

[

1 +
∞

∑

h=1

fh(t)qh

]

, (4.3)

where the level h function fh(t) is defined by

fh(t) =
1

h!

∂h

∂qh
Z̃(q, t)

∣

∣

q=0
where Z̃(q, t) =

∞
∏

k=1

∞
∏

h=1

(1 − qhtk)−Nk(1 − qht−k)−Nk . (4.4)

As we know by a previous work [7], up to the level h = 5, these level h functions

are given by rational functions. Therefore, this result is an indication that these level h

functions can be computed by means of Padé approximants. In fact this is the case as it

is shown in the appendix A, the functions f1(t), f2(t), f3(t), · · · can be calculated using

Padé approximants. As our main result, we have noted that these functions can be written

like the following

fh(t) =

∑2h+6
i=0 Ci,hti

th+2(1 + 4t + t2)
, (4.5)

where the value of the coefficients Ci,h up to the level h = 12 are shown in tables 1 and 2.

We have defined the values of the Ci,0 coefficients such that the level zero function is

defined as f0(t) = 1. It is interesting to note that the coefficients Ci,h satisfy the following

identities

Ci,h = C2h+6−i,h , (4.6)

h′

∑

i=0

φh′−iCi,h = −
h

∑

i=0

φh−iCi,h′ , (4.7)

which can be derived by using the two symmetries of the partition function (3.13), (3.14)

and verified by using the coefficients shown in tables 1 and 2. The coefficient φm is gener-

ated by

Z0(t)

1 + 4t + t2
=

∞
∑

n=0

φntn , (4.8)
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i Ci,0 Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 Ci,6 Ci,7

0 0 0 −1 −16 −126 −672 −2772 −9504

1 0 0 12 146 920 3996 13440 37224

2 1 0 −67 −536 −2411 −7616 −18358 −35184

3 4 46 248 822 1852 3270 7752 33356

4 1 40 319 1200 1745 − 5944 −48147 −179648

5 0 46 628 4114 17000 48206 91948 87730

6 0 0 319 3720 21767 82112 210717 326760

7 0 0 248 4114 32356 162662 585464 1575690

8 0 0 −67 1200 21767 162552 778424 2706944

9 0 0 12 822 17000 162662 977032 4215020

10 0 0 −1 −536 1745 82112 778424 4454624

11 0 0 0 146 1852 48206 585464 4215020

12 0 0 0 −16 −2411 −5944 210717 2706944

13 0 0 0 0 920 3270 91948 1575690

14 0 0 0 0 −126 −7616 −48147 326760

15 0 0 0 0 0 3996 7752 87730

16 0 0 0 0 0 −672 −18358 −179648

17 0 0 0 0 0 0 13440 33356

18 0 0 0 0 0 0 −2772 −35184

19 0 0 0 0 0 0 0 37224

20 0 0 0 0 0 0 0 −9504

Table 1: List of coefficients Ci,h up to level h = 7.

and it is given explicitly by the formula

φn =
(1 + n)(2 + n)(3 + n)(4 + n)(5 + n)2(6 + n)(7 + n)(8 + n)(9 + n)

27 · 34 · 52 · 7 . (4.9)

The importance of the identity (4.7) is as follows. If we know the coefficients Ci,0, Ci,1,

· · · , Ci,h′ , it is possible to compute explicitly the coefficients C0,h, C1,h, · · · , Ch′,h. For

instance, setting h′ = 0 in equation (4.7), we get

C0,h = −
h

∑

i=0

φh−iCi,0 , (4.10)

using (4.9) and the value of the coefficients Ci,0 given in the table 1 into the equation (4.10),

we obtain

C0,h =
(1 − h)h(1 + h)2(2 + h)2(3 + h)2(4 + h)(5 + h)

26 · 33 · 52 · 7 . (4.11)

By employing the same steps given above, setting h′ = 1 in equation (4.7), we arrive to

the following expression for the C1,h coefficient

C1,h =
(h − 1)h(1 + h)2(2 + h)(3 + h)(4 + h)(108 + 10h + 12h2 − h3)

25 · 33 · 5 · 7 . (4.12)

– 8 –
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i Ci,8 Ci,9 Ci,10 Ci,11 Ci,12

0 −28314 −75504 −184041 −416416 −884884

1 87912 180180 320892 484770 565136

2 −55368 −77968 −130185 −342472 −1118117

3 145512 513680 1480688 3596898 7511244

4 −467078 −900256 −1189750 −468240 2940853

5 −112192 −651084 −1221496 23356 8349688

6 −14878 −1971392 −7447790 −17913424 −30692216

7 3130008 3975312 77136 −15954844 −51076344

8 7136292 14067968 18009420 783936 −74353372

9 13953544 36499868 75237248 115010006 94216072

10 18453761 59453552 153557340 318143976 504911177

11 21308252 82467920 255938464 651539178 1363603964

12 18453761 88624848 330202624 999457424 2512598839

13 13953544 82467920 366326624 1301105402 3825279040

14 7136292 59453552 330202624 1398947880 4802902081

15 3130008 36499868 255938464 1301105402 5216743428

16 −14878 14067968 153557340 999457424 4802902081

17 −112192 3975312 75237248 651539178 3825279040

18 −467078 −1971392 18009420 318143976 2512598839

19 145512 −651084 77136 115010006 1363603964

20 −55368 −900256 −7447790 783936 504911177

21 87912 513680 −1221496 −15954844 94216072

22 −28314 −77968 −1189750 −17913424 −74353372

23 0 180180 1480688 23356 −51076344

24 0 −75504 −130185 −468240 −30692216

25 0 0 320892 3596898 8349688

26 0 0 −184041 −342472 2940853

27 0 0 0 484770 7511244

28 0 0 0 −416416 −1118117

29 0 0 0 0 565136

30 0 0 0 0 −884884

Table 2: List of coefficients Ci,h up to level h = 12.

Finally, it would be important to find an explicit expression for a general coefficient

Ci,h (for all h ≥ 0 and i ≥ 0). It is clear that if we know explicitly Ci,h, it should be

possible to write a compact expression for the complete pure spinor partition function

Z(q, t) =
1 + t

(1 − t)11

∞
∑

h=0

2h+6
∑

i=0

Ci,hti−h−2qh , (4.13)

where the factor (1 + t)/(1 − t)11, in front of our formula (4.13), comes from substitution

of equations (3.5) and (4.5) into the equation (4.3).
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5. Summary and discussions

We have given in detail a prescription for computing the partition function of pure spinors.

This prescription is mainly based on the knowledge of the zero mode part Z0(t) of the

partition function. From this level zero character formula, we have extracted the ghosts

multiplicities Nk, and using the moments (
∑

k ks+1Nk) of those multiplicities, by employing

a novel application of Padé approximants, we were able to compute higher level character

formulas Zh(t) of pure spinors (up to the twelfth mass-level h = 12). We have found that

our results are in agreement with the results found in [7] (up to the fifth mass-level h = 5)

where the fixed point technique was used.

We mention a subtle computational issue related to the fixed point formula [7, 8]. In

general for SO(2d) pure spinors the number of fixed points is 2d−1 and the complexity

of summing over these fixed points (as it was also noted in [8]) grows exponentially with

N = 2d−1. On the other hand the computations shown in this letter are less compli-

cated, so our technique can be used as an alternative (to the fixed point technique) easier

(computationally) way to get the character formulas for higher-dimensional pure spinors.

So far, in this work, we have computed the partition function without the spin depen-

dence on the states. Spin dependence is crucial if we want to prove that the full partition

function (including the contribution of the worldsheet matter sector) correctly reproduces

the light cone superstring spectrum [7]. Therefore, it would be interesting to know the

character formula with the spin dependence in the ghosts-for-ghosts scheme. We leave this

issue as a future work.

It would be nice to see whether our technique can be applied to other constrained

systems like strings moving on algebraic surfaces. Another possible application would be

the computation of the partition function of eleven-dimensional pure spinors, this can be

an interesting issue because an attempt at quantization of the supermembrane was given

by using eleven-dimensional pure spinors [19].
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A. Computation of higher level character formulas

Higher level character formulas Zh(t) can be obtained from the formal expression (3.12) as

follows. Performing a Taylor expansion of the expression (3.12) around q = 0, we have

Z(q, t) = Z0(t) +

∞
∑

h=1

qh

h!

∂h

∂qh
Z(q, t)

∣

∣

q=0
(A.1)

= Z0(t)

[

1 +
∞
∑

h=1

fh(t)qh

]

,
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where the level h function fh(t) has been defined as the expression (4.4). To obtain these

level h functions, we are going to use a method based on Padé approximants. Let us explain

our method by computing in detail the level one function f1(t).

From the expression (4.4), we derive the following expression for the level one function

f1(t) =
∞

∑

k=1

Nk(t
k + t−k) , (A.2)

expanding the r.h.s. of (A.2) around t = 1 and keeping terms up to some order (relevant

for the computations to be done next), we get

f1(t) = 2

∞
∑

k=1

Nk + (t − 1)2
∞
∑

k=1

k2Nk − (t − 1)3
∞

∑

k=1

k2Nk + · · · (A.3)

Applying the formula (3.9) to find the even moments
∑

k Nk,
∑

k k2Nk and replacing them

into the equation (A.3), we obtain

f1(t) = 22 + 4(t − 1)2 − 4(t − 1)3 + · · · (A.4)

Using Padé approximants, we express the function f1(t) as a rational function

f1(t) ∼= f
[M/N ]
1 (t) =

1 +
∑M

j=1 pjt
j

∑N
j=0 qjtj

, (A.5)

for instance, as a pedagogical illustration let us compute explicitly the [2/1] Padé approx-

imant of f1(t)

f
[2/1]
1 (t) =

1 + p1t + p2t
2

q0 + q1t
, (A.6)

expanding the r.h.s. of (A.6) around t = 1, we get

f
[2/1]
1 (t) =

1 + p1 + p2

q0 + q1
+

p1q0 + 2p2q0 − q1 + p2q1

(q0 + q1)2
(t − 1) (A.7)

+
p2q

2
0 − p1q0q1 + q2

1

(q0 + q1)3
(t − 1)2 − p2q1q

2
0 − p1q0q

2
1 + q3

1

(q0 + q1)4
(t − 1)3 + · · ·

Equating the coefficients of (t − 1)0, (t − 1)1, (t − 1)2, (t − 1)3 in equations (A.4)

and (A.7), we get 4 equations for the unknown coefficients p1, p2, q0, q1

1 + p1 + p2

q0 + q1
= 22 , (A.8)

p1q0 + 2p2q0 − q1 + p2q1

(q0 + q1)2
= 0 ,

p2q
2
0 − p1q0q1 + q2

1

(q0 + q1)3
= 4 ,

p2q1q
2
0 − p1q0q

2
1 + q3

1

(q0 + q1)4
= 4 ,

– 11 –
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[M/N ] p1, p2, · · · , pM q0, q1, · · · , qN

[2/1] 7/2, 1 0, 1/4

[2/2] 20/23, 1 1/46, 2/23, 1/46

[3/1] 1, 18/25, −2/25 1/50, 1/10

[1/3] 43/23 75/5566, 875/5566, −135/2783, 1/121

[3/2] 20/23, 1, 0 1/46, 2/23, 1/46

[2/3] 20/23, 1 1/46, 2/23, 1/46, 0

[3/3] 20/23, 1, 0 1/46, 2/23, 1/46, 0

[4/4] 20/23, 1, 0, 0 1/46, 2/23, 1/46, 0, 0

Table 3: List of coefficients obtained for higher Padé approximants.

solving these system of equations (A.8) we obtain

p1 =
7

2
, p2 = 1 , q0 = 0 , q1 =

1

4
. (A.9)

Computations of higher Padé approximants follows in the same way as it was shown

above. The results of these computations are shown in table 3.

As we can see by explicit computations, the Padé approximants are approaching to

the rational function (46 + 40t + 46t2)/(1 + 4t + t2), and therefore we take this function as

being the level one function f1(t)

f1(t) =
46 + 40t + 46t2

1 + 4t + t2
. (A.10)

By multiplying this function (A.10) with the level zero character Z0(t), we get

Z1(t) =
46 − 144t + 116t2 + 16t3 − 16t5 − 116t6 + 144t7 − 46t8

(t − 1)16
, (A.11)

and therefore, we correctly reproduce the level one character formula given in [7, 9].

For the next level h = 2, by using the same strategy shown above, we have found that

the Padé approximant computation gives the following result for the level two function

f2(t) =
−1 + 12t − 67t2 + 248t3 + 319t4 + 628t5 + 319t6 + 248t7 − 67t8 + 12t9 − t10

t4(1 + 4t + t2)
.

By multiplying this level two function f2(t) with the level zero character Z0(t), we correctly

reproduce the level two character formula found in [7].

Computation of higher level functions fh(t) by means of Padé approximants, suggest

us that these functions can be written like

fh(t) =

∑2h+6
i=0 Ci,hti

th+2(1 + 4t + t2)
. (A.12)

We have computed the Ci,h coefficients up to the level h = 12, the results are given in the

tables 1 and 2 of section 4. Multiplying the functions fh(t) with the level zero character

formula Z0(t), we obtain the characters Zh(t). We have compared our first five character

formulas with the formulas given in [7] and we have found agreement.
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